Maintenance Manual for Collaborative Robot
English
English
  • Maintenance Manual for Collaborative Robot
  • About this manual
    • Copyright
    • Notation rules
    • Safety precautions
  • 1. Safety
    • 1.1 Safety requirements
      • 1.1.1 Applicable standards
      • 1.1.2 Safety performance
    • 1.2 Safety measures
      • 1.2.1 Safety functions
      • 1.2.2 Safety training
      • 1.2.3 Safety labels
      • 1.2.4 Emergency stop
        • 1.2.4.1 Emergency stop switches
        • 1.2.4.2 Connecting to emergency stop devices of external systems
    • 1.3 Risk assement
    • 1.4 Potential risk
    • 1.5 Validity and responsibilities
  • 2. Introduction to the product
    • 2.1 Intended uses of the product
    • 2.2 Product components
    • 2.3 Part names
      • 2.3.1 Manipulator
      • 2.3.2 Controller
      • 2.3.3 Teach pendant
    • 2.4 Nameplate
  • 3. Product installation
    • 3.1 Environment of installation and preparation
      • 3.1.1 Environments of installation and use
      • 3.1.2 Spaces of the robot system
      • 3.1.3 Allowable limit of wrist axis load
      • 3.1.4 Payload
    • 3.2 Product installation
      • 3.2.1 Composition of robot systems
      • 3.2.2 Robot and controller installation
        • 3.2.2.1 Mounting plate installation
      • 3.2.3 Tool connection
      • 3.2.4 Wiring
      • 3.2.5 Power on
    • 3.3 Robot interface
      • 3.3.1 Tool flange connection point
        • 3.3.1.1 T4071017041-001 (TE) pin map
        • 3.3.1.2 T41171130012-001 (TE) pin map
        • 3.3.1.3 Air hose
      • 3.3.2 External device interface
        • 3.3.2.1 Terminal block (TB1): common analog I/O signals
        • 3.3.2.2 Terminal block (TB2): dedicated safety signal input
        • 3.3.2.3 Terminal block (TB3): system signal I/O
        • 3.3.2.4 D-sub 25-pin connector (SDIO): common digital I/O
        • 3.3.2.5 D-sub 9-pin connector (COM1, COM2): serial communication (RS485, 422)
    • 3.4 Stopping distance and time
      • 3.4.1 STOP 0
      • 3.4.2 STOP1
    • 3.5 Safety setting
    • 3.6 Programming and restarting
    • 3.7 Axis limiting devices
    • 3.8 Movement without drive power
    • 3.9 Other safety precautions
  • 4. Maintenance
    • 4.1 Checking of the collaborative robot
      • 4.1.1 Check sheet
      • 4.1.2 Wiring check
      • 4.1.3 Bolt check
    • 4.2 Maintenance of the collaborative robot
      • 4.2.1 Replacement of internal wiring
      • 4.2.2 Replacement of the integrated driving module
        • 4.2.2.1 Replacement timing
        • 4.2.2.2 Weight of the integrated driving module
        • 4.2.2.3 Tools and parts
        • 4.2.2.4 Recommended posture in disassembling the integrated driving module
        • 4.2.2.5 Method for replacing the integrated driving module
      • 4.2.3 Encoder backup battery replacement
      • 4.2.4 Grease replacement
    • 4.3 Controller check and maintenance
      • 4.3.1 Internal structure
      • 4.3.2 Safety control module
        • 4.3.2.1 Connection and display
        • 4.3.2.2 Connection of I/O signals for the robot system (TBSYS1)
        • 4.3.2.3 Safety I/O signal connection (TBSDI, TBSDO)
        • 4.3.2.4 Connection of common digital I/O signals (TBDIO)
        • 4.3.2.5 Connection of common digital I/O signals (TBAIO)
        • 4.3.2.6 Information on major components
      • 4.3.3 Power precharge module (PPM)
        • 4.3.3.1 Connection and display
        • 4.3.3.2 Information on major components
      • 4.3.4 Regenerative discharge module (RDM)
        • 4.3.4.1 Connection and display
        • 4.3.4.2 Information on major components
      • 4.3.5 Microcomputer module
      • 4.3.6 Power supply
      • 4.3.7 Teach pendant
      • 4.3.8 PCI communication card (optional)
        • 4.3.8.1 Connect pin map
  • 5. Moving and storing
    • 5.1 Moving method
      • 5.1.1 Recommended posture
      • 5.1.2 Packaging box
      • 5.1.3 Cautions
    • 5.2 Storing method
    • 5.3 Disposal
  • 6. Appendix
    • 6.1 Block diagrams
      • 6.1.1 YL012 S-axis
      • 6.1.2 YL012 H-axis
      • 6.1.3 YL012 V-axis
      • 6.1.4 YL012 R-axis
      • 6.1.5 YL012 B-axis
      • 6.1.6 YL012 R1-axis
      • 6.1.7 YL012 tool flange
      • 6.1.8 Power connector
    • 6.2 System specifications
      • 6.2.1 Collaborative robot
      • 6.2.2 Controller
      • 6.2.3 Teach pendant
  • Certifications
  • Attachment
    • Rules on Occupational Safety and Health Standards, and Notice for Safety Inspection
  • Quality Assurance
Powered by GitBook
On this page

Was this helpful?

  1. 4. Maintenance
  2. 4.2 Maintenance of the collaborative robot

4.2.3 Encoder backup battery replacement

Previous4.2.2.5 Method for replacing the integrated driving moduleNext4.2.4 Grease replacement

Last updated 3 years ago

Was this helpful?

A dedicated battery attached to the serial encoder retains the position data of each axis regardless of whether power is supplied to the controller. The battery should be replaced at two-year intervals.

The method for replacing the encoder backup battery of each axis is as follows:

1. While the controller power is on, press the emergency stop switch.

[Caution]: Before correcting the encoder offset, set the operation preparation at ON, and ensure that the power is connected by pressing the enabling switch of the teach pendant for two to three seconds.

2. Identify the position of the battery of each axis, and remove the frame cover of the battery by removing bolts with a torque wrench.

No

Axis

Cover

Bolts

S

LOWER FRAME COVER

Hex socket bolts (M3X6, five pieces)

H

UPPER FRAME LOWER COVER

Hex socket bolts (M3X6, five pieces)

V

UPPER FRAME UPPER COVER

Hex socket bolts (M3X6, six pieces)

R2

ARM FRAME COVER

Hex socket bolts (M3X6, six pieces)

B

ARM PIPE COVER

Hex socket bolts (M3X6, six pieces)

R1

HAND GRIP

M3 small-diameter bolts (four pieces)

3. Identify the orientation of the battery terminals, and replace the old battery with a new one.

[Caution]

  • Only use the battery of the designated specifications (ER6C (AA 3.6 V) / manufacturer: Maxcell).

  • Identify the orientation of the battery terminals, and insert the battery correctly.

  • Do not recycle or arbitrarily dispose of the battery. The battery should be disposed of as an industrial waste according to the applicable national or local laws and regulations.

4. Put the frame cover on the axis, and fixate it by fastening bolts with a torque wrench.